168娱乐app下载太阳能热水器的组成及工作原理xylinedocx

  新闻资讯     |      2024-07-17 11:19

  168娱乐app下载太阳能热水器的组成及工作原理xylinedocx详图介绍太阳能热水器的组成及工作原理 2.1系统总体结构设计 调节阀图2-1 调节阀 图2-1系统结构图 图2-1为系统设计的结构图,该图的系统控制原理图如下图2-2: T3 T2 仃 图2-2系统控制原理图 注释:T1: 热水箱的温度传感器 T2: 循环水管中的温度传感器 T3: 集热器中的温度传感器 F1: 循环水阀门 F2: 冷水阀门 F3: 热水阀门 此款太阳能热水器利用微机控制主要有以下儿种控制功能:晨水加热控制、温水 循环控制、冷水集热控制、水箱加热控制。 早晨水温控制 山于清晨太阳光较弱,所以太阳能热水器从系统发挥作用。为了提供温度不 低于30摄氏度的水,热水器在清晨4-7点之间对水箱进行电加热,具体控制过 程如下: 首先,关闭冷水阀门F2和循环水阀门F1,然后微机开始进行水箱的温度采 集,同时进行温度的比较,当水箱的温度小于30摄氏度时,电热器D接通进行 加热,同时微机继续对热水箱的温度进行采集。当温度加热到大于30摄氏度时 电热器断开,如此反复循环保证了温度的稳定。 循环水集热过程 早晨水盘冠制之后(7?9点),设定当日的水箱温度N (由两位BCD次齿轮 开关设定),输入微机,再利用微机控制系统,通过太阳光能对热水箱加热以达 到理想温度N。具体控制过程如下: 打开循环阀门F1,关闭冷水进水阀门F2,热水阀门F3处于空控状态。然后 开始比较温度,若(T3-T15摄氏度,T2T1)为止。如若T1二N,那么循环水集 热过程结束,进入冷水集热控制过程。 冷水集热控制 此时热水箱温度已达到了山冷水要进入太阳能集热器,这时温度为T3,和 当日的设定温度值相比较,若T3N则将已加热的水送入热水箱,每天的控制时 段大概为9点?20点。具体控制过程如下: 关闭循环水阀门F2,打开冷水阀门F2,热水阀门F3处于可控状态。若T3N, 打开热水阀门F3并将保持一段时间,若T3N,关闭F3继续给太阳能集热器加 热,知道温度答应N,当打开F3时此时比较水管水温T2与N的值,若T2N阀 门F3继续保持打开状态,否则关闭F3。可见,次过程充分利用太阳光能转化为 热能,方便快捷。 水箱加热控制 此时,也许你会问如果没有日照或者日照较弱时,到了晚上我们是否还能洗 上热水澡吗?答案是肯定的,不要忘了这款热水器还有一个从系统,这时它就要 发挥作用了。热水箱温度为T1,将它和设定値N相比较,从而控制是否打开电 加热,控制时段为下午,具体过程如下: 若TKN,电加热接通;否则,电加热断开,而且,15点?20点中的侮个小 时有下表的关系: 表一 时间(时) 温度比较 加热值(度) 15 T135N 35 16 Tl40N 40 17 T145N 45 18 Tl50N 50 19 T155N 55 20 Tl60N 60 最终热水箱的温度加热到设定值N。山此可见,即使没有日照我们照样可以洗上 热水澡了。 综上所述,太阳能供热控制系统不仅节约而且高度只能化,方便省事,不论 日常家居,还是对宾馆、学校等都是最佳选择。 2太阳能热水器组成及原理 吊行显示接口电路、看门狗和复位接口电路以及继电器输岀接口电路等。 80c51 图3?1太阳能硬件结构图 3.2.实时时钟接口电路 为实现热水器24小时供应热水的U的,必须有一个实时时钟来为系 统提供准确的基准时间;在软件设讣上则要实时地读出当前时间,同设定时间比 较,以决定系统工作状态。本系统采用美国DALLA S半导体公司最新推出的时钟 芯片DS12887,该芯片采用CMOS技术,把时钟芯片所需的晶振和电池以及相关 的电路集成到芯片内部,并与MC146818管脚完全兼容。DS12887芯片具有微功 耗、外围接口简单、精度高,工作稳定可靠等优点。它与80C51单片机的接口电 路见下图3-2o 80C51DS12887 80C51 图3?2 DS12887与单片机接口电路 模式选择脚MOT接地,选择IN TEL时序。DS12887的高位地址用80C51的 P2.4选择,则时钟芯片的高8位地址为EFH,而其低8位地址则由芯片内部各 单元的地址来决定(00H?80H), DS12887的中断输出端IRQ接上拉电阻,同 80C51中断线IN TO相连,为单片机提供中断信号。SQW端口编程为2Hz方波输 出,经二分频后,驱动两个LED发光二极管作为时钟的秒闪烁显示。 3.水位检测和温度检测接口电路 蓄水箱水位和温度检测部分是实现温度智能控制的重要环节,只有准确地检 测出水位和温度,才能通过软件计算提前开始辅助加热的预加热时间。要实现辅 助加热提前时间的精确讣算,最好是采用连续液位传感器,但考虑系统成本,本 设计仍采用分段式液位传感器(通过软件来提高精度),在水位显示上也仍采用分 段显示。水位检测部分的硬件连接如图3所示。 PO (8031) 74LS32 图3-3水位监测及显示接口电路 检测原理如下:当水箱中无水时,8个非门均由1M欧姆电阻上拉成高电平,所 以图中各“非”门(CD4069)输出均为低电平,LED]?LED8均不亮。当水位高 于“非”门1的输入探针时,由于水的导电作用,使“非”门1的输入变为低 电平,所以其输出变为高电平,LED点亮,依此类推。随着水位的上升,各“非” 门输出相继为高电平,LED依次点亮。这里要注意的是上拉电阻不能选择太小, 因为水的电阻在100R8左右,所以上拉电阻选择太小的话,将在水位升高时, 无法把“非”门输入端拉成低电平。实验表明,上拉电阻选择在500k?1M欧姆 左右能很好地满足电路的工作要求。为了使80C51随时能够读出当前的水位情 况,这里选用74L S244作为状态输入缓冲器。蓄水箱温度检测电路采用DS18B20 芯片使其换成脉冲信号168体育app下载,送到80C51的I/O 口(编程为计数器工作模式),通过 测量输出脉冲频率的大小来换算成水温高低信号。 3.4看门狗和复位接口电路的设计 的看门狗电路由两级74LS123芯片组成。用P1. 7作为单稳态触发器 的定时脉冲发生端,当P1. 7 口线发正脉冲时,系 统将自动复位(附录)。 3.5键盘和显示接口电路的设计 3. 5. 1键盘电路 下图为80C51单片机P1 口构成的中断方式4*4键盘电路。Pl. 0-P1. 3为行线的一组输入端相连,输出端与外 部中断IVT1相连。16个键号Ki (1=0-15)次序如图中标注。 80C51 图3-4 80C51 Pl 口构成的4*4中断方式键盘 行列式键盘处理程序较为复杂,当有键按下时74HC21输出端出现低电平请 求中断;在中断服务程序中要再次确认是否真有键按下,真有键按下时,再查出 是哪个键按下,把该键的键号送入堆栈保护,等待键释放后再将键号弹出A中。 该键盘输入处理程序的岀口状态是键号在A中。设计中断程序时,先在主程序中 将中断系统初始化,并开中断。在试验演示中通常开中断都设置循环等待。 3. 5.3显示接口电路的设计 键盘和显示电路是人机交互的重要手段。控制键是用户干预系统运行的唯一 接口,也是用户比较关心的问题。为了实现对时间与温度的设定及显示功 能,串行显示电路采用串入并出芯片74LS164驱动4位数码管实现时间与温度的静 态显示。 该电路只使用80C51的3个端口,配接4片吊入并出移位寄存器74LS164与1片 三端可调稳压器LM317T。其中74LS164的引脚Q0?Q7为8位并行输出端;引脚A、B 为串行输入端;引脚CL K为时钟脉冲输入端,在CLK脉冲的上升沿作用下实现移 位,在CLK二0、清除端MR二1时,74LS164保持原来数据状态;MR二0时,74LS164 输出清零,其显示电路如3. 5.3图。 MS MS 图3?5串行口扩展的4位LED显示电路 其工作过程如下:80C51的串行口设定在方式0移位寄存器状态下,串行数据由 P3.0发送,移位时钟由P3.1送出。在移位时钟的作用下,串行口发送缓冲器的 数据一位一位地移入74LS164中。4片74LS164串级扩展为4个8位并行输出口, 分别连接到4个LED显示器的段选端作静态显示。需要指出的是,山于74LS164无 并行输出控制端,因而在串行输入过程中,其输出端的状态会不断变化,造成不 应显示的字段仍有较暗的壳度,影响了显示的效果。以往的做法是在74LS164的 输岀端加接4片锁存器或三态门,使移位寄存器吊行输入数据时其输岀端的变化 不反映到LED上,待串行输入结束后再打开锁存器或三态门,将稳定的厂一— 送给LED ° 本设计电路的独特之处在于仅采用了 1片三端可调稳压器LM317T, 31 2脚分别是电压输入、输出端,317T的1脚是电压调整端,脚2输出电I ... 电压而变化。脚1与接地电阻之间并一个NPN三极管,它的基极受Pl?7 口线控制, 串行输入时Pl?7 口线为高电平,三极管饱和导通使317T的脚1约为0.3 V,脚2 输岀电压随之下降到1.5V,不足以使共阳极LED发光,故此时串行输入的影响不 会反映到LED上;串行输入结束后,使Pl?7口线为低电平,三极管截止,脚2输出 电压因脚1电压增高便上升到2.0V使LED正常发光。因此,1片三端可调稳压器 LM317T起到了4片锁存器的作用使LED显示不会闪烁。本电路的另一优点是通过 可调电位器P1可在线的输岀电压,使LED的显示亮度均匀可调,而且省掉 了大量的LED限流电阻。 3.6光电隔离与辅助加热电路设计 图3?6辅助加热电路图 上图为太阳能热水器光电隔离与辅助加热电路设讣。当室外光强不足(阴天、 下雨)时,对水箱的水提前?加热是很必要的,这一电路恰好能完成这一功能。工 作原理:当单片机80C51P2」口输出高电平时,三极管T1导通,致使发光二极 管发光,同时光敬三极管T2导通,继电器闭合,电阻丝R1~R4发热,这样就完 成了加热任务,此电路虽然简单,但在太阳能热水器中是必不可少的。 的软件设计 4.1主程序设计 热水器不论在什么样的天气里,都能够在设定的时间向用户提供设定温度的 热水,从而给用户带来便利。当在设定的时间使水温达到设定温度时,将 通过声光报警提醒用户。 根据这一要求,软件设计釆用模块化结构,包括主程序、键盘中断子 程序、DS12887更新周期结束中断子程序、LED显示子程序和提前加热时间计算 子程序等。系统主程序主要完成温度和水位的检测以及进行辅助加热时间预算和 一些初始化功能。在主程序中釆用了查表方法进行辅助加热提前量预算。系统主 程序流程图如图4所示。 图4-1系统程序流程图 对于温度和时间设定,每次设定结束后,就将设定值存入DS12887的非易失 性RAM中,下次开机时进行读取。这样作至少有两个优点:一是系统在不进行设 定时,就认定该设定值和先前一次一样,解决了每次开机总要从头设定的问题, 另一个是若系统在运行中间停电而再次来电时,可以不用重新设定,就能按原 设定值对温度进行控制,增强了适应外界变化的能力。对提前加热时间的 计算,则是系统能否实现预定功能的重要一环。因为系统釆用分段式水位检测, 若采用能量守恒的方法对提前加热时间进行预算,也同样得不到精确的结果。为 了避开繁琐的计算过程,本系统中采用了模糊控制思想,使用了如下一些控制语 句: IF水位高AND温度差大THEN加热时间长 IF水位适中AND温度差适中THEN加热时间适中 IF水位低A\D温度差低THEN加热时间少 采用这种思想后,可以用实验方法获得各种情况下需要加热的时间,编制 成表格。使用时,只要查表获得提前加热时间就行了。显然,表格分得越细,控 制就越准确。本采用温差每等于5°C为一格,就能满 足控制要求了。为了减小误差,试验表明,可以釆用如图5的方法。 水位探针 图4-2水位监测处理示意图 实验中,用水位达到B1时的结果代替水位达到A1时的结果,B2代替A2, B3代 替A3, B4代替A4。这样,CPU读入的Al水位查表后得到的预加热时间是实验 中水位在B1处的时间。经过这种处理,会把山于分段检测而产生的计算误差减 小一半,由原来的h变成了 h/2(h为分段水位检测间隙)o如果水箱水深为40cm, 分8段检测,此种处理方法的计算将使水位误差山原来的5cm变成了 2?5cm。这 种误差对于民用的热水器来说,已完全能够满足要求了。 2显示子程序 分析表明,移位寄存器74LS164仅有串入并出作用没有译码功能。因此,在 编写显示驱动程序之前,首先需要计算列写出与本电路对应的LED段选码,然后 III80C51的P3.0口送入74LS164的串行输入端,再并行输出到LED的段选端。需要 抬岀的是,上面显示电路采用T0S28106BHK型号的共阳极LED显示器,根据PCB印 制线根段选线的 连接没有遵照通常的规律,而是如图3-5所示的段排列为7、6、4、2、1、9、10、 相应的段选码也要重新计算,如显示字符0的段选码为11H,显示字符1的段选 码为D7H等。另外,这种稳定的静态显示方式也省去了CPU的动态扫描过程,此为 上述电路的乂一特点。电路中设计了4位LED显示器,其功能为:左首位为百位数 或标志位,左二位为十位数,左三位为个位数,左四位为小数点后的十分位数。 据此,给出如图4-3所示的显示子程序框图。 11( 岀兀 图4-3显示子程序框图

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者